

Corn syrup is either sprayed on the DGS following fermentation or sold as a stand-alone product. If corn oil is extracted, then it is added to the DGS following fermentation or sold as an animal feed supplement or a biodiesel feedstock. The GREET model uses the displacement method to calculate energy and emission credits based on co-product displacement ratios.

**Table 1.** Principal Options for GHG Reductions at Corn Ethanol Plants

| Scenario                                                 | kg CO₂/MMBtu   | Description                                                | Assumption/ Calculation Basis <sup>b</sup>                                                                  |
|----------------------------------------------------------|----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                          | 55.5           | U.S. Average dry mill                                      | 22,480 Btu/gal, 0.61 kWh/gal, 2.86                                                                          |
| Baseline                                                 |                | ethanol.                                                   | gal/Btu                                                                                                     |
| CI Reduction <sup>a</sup> Low CI Production Technologies |                |                                                            |                                                                                                             |
| CCS                                                      | -33.8          | Store CO <sub>2</sub> underground                          | Capture 90% of fermentation CO <sub>2</sub>                                                                 |
| Renewable<br>Power                                       | -3.8           | REC for electricity as well as on-site wind or solar power | 0 g CO₂e/kWh, per GREET                                                                                     |
| Biomass<br>Heat and<br>Power                             | -20 to -25     | Power and heat generated at corn ethanol plant.            | Eliminates natural gas and electric power emissions. Calculate GHG emissions from biomass use in GREET.     |
| RNG                                                      | -21            | 40% of natural gas from RNG                                | - 100 g CO₂/MJ diary, swine, or steer<br>manure. Calculate GHG emissions based<br>on RNG use and CI of RNG. |
| Farming GHG Reductions                                   |                |                                                            |                                                                                                             |
| Green NH₃                                                | -6.1           | Green Ammonia for<br>Fertilizer                            | FD-CIC Green Ammonia                                                                                        |
| Low CI NH₃                                               | -2 to -5       | Ammonia with CO <sub>2</sub> capture                       | Calculate GHG emissions based on ammonia production process.                                                |
| No Till                                                  | -3.4 to -6.5   | Switch Reduced to No Till farming                          | FD-CIC Reduced Till to No Till depending upon region.                                                       |
| Fertilizer                                               | -2.4           | Nitrogen efficiency                                        | FD-CIC Enhanced Efficiency Fertilizer                                                                       |
|                                                          | -5.2           | Precision application                                      | FD-CIC (4R) Right time, place, form, rate                                                                   |
|                                                          | -1 to -3       | Bio-based fertilizer                                       | Calculate based on farming inputs                                                                           |
| Manure<br>Application                                    | -5.5 to -28    | Mix of dairy, swine, cattle, poultry manure                | FD-CIC Manure Application                                                                                   |
| Cover Crop                                               | -20.4 to -39.1 | Grow winter cover crop                                     | FD-CIC Cover Crop                                                                                           |

<sup>&</sup>lt;sup>a</sup> Reductions apply to baseline for typical dry mill ethanol plant; where multiple technologies or practices apply, reductions may be added together to calculate the fuel's emission rate.

## **Corn Ethanol GHG Emissions**

Typical GHG emissions for a dry mill corn ethanol plant are available in the GREET model. The default values represent a mix of plant operating parameters which vary largely with the amount of DGS drying that occur at each plant.

## **Ethanol Plant Reductions**

Several emission reduction options are available to ethanol plants and are discussed below.

LO #41 PU-22-391



<sup>&</sup>lt;sup>b</sup> GHG reductions are available from standard values in the FD-CIC or from additional calculations as indicated.